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(4–10). Best results are obtained for stoichiometric starting
The anisotropy of low-temperature thermal expansion of the ratios 2 : 2 : 1 : 2. The Bi-2 : 2 : 1 : 2 phase of bismuth cuprates

high-temperature superconductor Bi2Sr2CaCu2O8 (Bi-2 : 2 : 1 : 2) has the ideal composition Bi2Sr2CaCu2O8 and has a Tc of
is analyzed theoretically. The generalized Grüneisen parame- about 90 K (11). The structure of Bi2Sr2CaCu2O8 is pseudo-
ters (GPs) of elastic waves propagating in different directions tetragonal (I4/mmm) (12). The lattice parameters a
of Bi-2 : 2 : 1 : 2 are calculated using the measured values of (55.4091 Å), b (55.4209 Å), and c (530.8445 Å) can be
second order elastic constants and first order pressure deriva- approximated by an orthorhombic cell (a P b) with the
tives of second order elastic constants. For this, we have used

copper oxide layers in the ab plane (13). Hence the symme-the measured values of the second order elastic constants of
try of the Bi-2 : 2 : 1 : 2 is, however, no greater than pseudo-G. A. Saunders et al. The 12 third order elastic constants of
orthorhombic. Bi2O2 layers consist of two parallel planarthe Bi-2 : 2 : 1 : 2 system are calculated from the expressions of
BiO sheets. The bonds between the bismuth oxide layerseffective second order elastic constants. All the third order
in the structure are weak and hence the crystallites of theseelastic constants are negative except C155 and C112 . Some values

of generalized Grüneisen parameters are negative. The general- compounds have been shown to cleave readily between
ized GPs g0j are all positive except g02 (20.048) at u 5 858. The these layers (14). The present objective is to study the
Brugger gammas are calculated and the low-temperature limits thermal expansion and the Grüneisen parameters of Bi-
of the Grüneisen gamma are determined using the procedure 2 : 2 : 1 : 2. We have calculated the generalized isothermal
of Menon and Ramji Rao. g2

L has the value of 4.4 for the Bi- Grüneisen parameters c9j and c0j for the acoustic modes.
2 : 2 : 1 : 2 system. The low-temperature limit of the Grüneisen For this, the third order elastic constants of Bi2Sr2CaCu2O8gamma is positive. Therefore, we expect volume expansion to are obtained from second order elastic constants and first
be positive down to absolute zero for the Bi-2 : 2 : 1 : 2 system.

order pressure derivatives of second order elastic con-The anisotropy of thermal expansion along the c axis of the
stants. The expressions for finding out the mode Grüneisencompound is very much higher than that along other
gammas for Bi2Sr2CaCu2O8 are obtained from the effectivedirections.  1996 Academic Press, Inc.

second order elastic constant expressions. These expres-
sions are derived for the space groups (4/mmm, 4·2m, 422,
4mm) and are used to obtain the mode Grüneisen gammas.INTRODUCTION

THIRD ORDER ELASTIC CONSTANTSThe anisotropic thermal expansion of high-temperature
OF Bi2Sr2CaCu2O8superconductors has received a great deal of attention in

recent years. The high-Tc cuprate superconductors are tex-
Third order elastic constants determine the anharmonictured materials and crystals are typically micaceous (i.e.,

properties of solids such as thermal expansion, tempera-with a thin plate like morphology) (1). The very small
ture and pressure dependence of elastic constants, andsize of the single crystals prohibits the measurement of
interaction of acoustic and thermal phonons. The thirdnonlinear anharmonic properties and therefore the tex-
order elastic constants can be determined using the finitetured samples would have a bright prospect in commercial
strain elasticity theory of Murnaghan (15), where elasticapplications in the foreseeable future (2). Since the discov-
stress is nonlinear with elastic strain. If the higher orderery of superconductivity in the bismuth–strontium–
elastic constants are known, on the basis of continuumcalcium–copper oxides by Maeda et al. (3) in 1988, many
approximation, it is possible to calculate the scattering ofauthors have determined the nonlinear acoustic properties
phonons with the aid of nonlinear elasticity theory. The
expressions for the effective second order elastic constants
and its pressure derivatives for the strained crystal in te-1 To whom correspondence should be addressed.
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TABLE 1 c(q, j) are given by
Third Order Elastic Constants of

Bi2Sr2CaCu2O8 (in GPa)
c9(q, j) 5

2 log g(q, j)
«9C111 5 21048 C133 5 2524 C344 5 2524

C112 5 110 C155 5 1174 C333 5 2963
c0(q, j) 5

2 log g(q, j)
«0

,C113 5 2524 C166 5 2458 C144 5 0
C123 5 2354 C222 5 21048 C366 5 0

where «9 is a uniform areal strain in the basal plane perpen-
dicular to the c axis and «0 is a uniform longitudinal strain
along the c axis. Here, instead of choosing arbitrary strain

tragonal system are given by Ramji Rao and Padmaja components in defining GPs, we choose such strains that
(16). The pressure derivatives of the second order elastic leave the symmetry of the crystal unchanged. Hence the
constants are in terms of higher order elastic constants up Lagrangian strain parameters hi j , which are used in place
to third order. As the Bi-2 : 2 : 1 : 2 has 6 independent sec- of volume change, are selected such that i 5 j (where i 5
ond order elastic constants, we have obtained 6 equations j 5 1, 2, 3), in the quasi-harmonic approximation.
of effective second order elastic constants in terms of strain At low temperatures, the GPs of the elastic wave fre-
components «9 and «0. We have calculated the complete quencies determine the anisotropic thermal expansion of
set of 12 independent third order elastic constants and they a uniaxial crystal, and the effective Grüneisen functions
are presented in Table 1. All of them are negative except approach the limits
C155 and C112 . The third order elastic constants bear their
thermodynamic definitions introduced by Brugger (17).

c21
' (23) 5 FEO3

j51
c9j (u, f)V23

j (u, f)) dVG21

[2]LOW-TEMPERATURE THERMAL EXPANSION
OF Bi2Sr2CaCu2O8

c21
i (23) 5 FEO3

j51
c0j (u, f)V23

j (u, f)) dVG21

The linear thermal expansion coefficients denoted by ai

and a', parallel and perpendicular to the c axis of Bi-
Here Vj(u, f) is the wave velocity of elastic wave of2 : 2 : 1 : 2, are expressed as

polarization index j, propagating in the direction (u, f).
c9j and c0j are the GPs of this acoustic mode. the GrüneisenVa' 5 [(S11 1 S12)c21

' (23) 1 S13c21
i (23)]Cv 5 cBr

' Cvx
[1] parameters for the acoustic modes can be calculated using

Vai 5 [2S13c21
' (23) 1 S33c21

i (23)]Cv 5 cBr
i Cvx. the second order elastic constants and third order elastic

constants and hence, the low temperature limits of GPs
can be obtained from the procedure of Menon and RamjiHere Sij is the elastic compliance coefficients, V is the
Rao (19, 20). In tetragonal crystals, it is assumed that GPsmolar volume, Cv is the molar specific heat in the T 3 region,
and the acoustic wave velocities depend only on u and areand x is the isothermal compressibility. c1

'(23) and c1
i (23)

independent of the azimuth f.are, respectively, the low temperature limits of the effective
The average effective Grüneisen functions in the nota-Grüneisen functions c1

'(T) and c1
i (T). cBr

' and c Br
i are the

tion of Brugger and Fritz in Eq. [1] are expressed asaverage or effective Grüneisen functions in the notation
of Brugger and Fritz (18). The effective Grüneisen func-

cBr
' 5 [(S11 1 S12 1)c21

' (23) 1 S13c21
i (23)]x21

[3]
tions are defined as

c Br
i 5 [2S13c21

' (23) 1 S33c21
i (23)]x21.

c1
'(T) 5 FO

qj
c0(q, j)Cv(q, j)GFO

qj
Cv(q, j)G21

THE MODE GRÜNEISEN GAMMAS OF
Bi-2 : 2 : 1 : 2 SYSTEM

c1
i (T) 5 FO

qj
c9(q, j)Cv(q, j)GFO

qj
Cv(q, j)G21

.
The general Thurston and Brugger equation for wave

propagation is (21)
These effective Grüneisen functions are weighted aver-

ages of the generalized Grüneisen parameters c(q, j). q is
r0g2Ui 5 4P2 O

kjl
UjYlYk FCik, jl 1 O

mn
«mn(Cik, jl,mn

[4]
the wave vector and j is the polarization index. Cv(q, j) is
the contribution of a single normal mode of frequency g,
wave vector q, and polarization index j to the specific heat 1 Cik,nldmj 1 Cnk, jldmi 1 Ckl,mndi j)G.
of the lattice.
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Here Yi’s are the components of the arbitrary direction calculation of c9j and c0j . Table 2 gives the wave velocities
and the GPs for the elastic wave propagating at differentin which the wave is propagating and Uj’s are the compo-

nents of displacement. g is the angular frequency and r0 angles u to the c axis of Bi2Sr2CaCu2O8 . The plots in polar
coordinates of the generalized Grüneisen parametersis the density of the crystal in the unstrained state. The

Cijkl and Cijklmn values are the second order and third order c9j and c0j for acoustic modes as a function of angle u, which
the direction of propagation makes with the crystal axis,elastic constants, respectively.

From the elements of the secular determinant formed are given in Figs. 1 and 2, respectively. The calculated
values of the low-temperature limits of the effective Grü-by the coefficients of Ui’s, the expressions for the effective

second order elastic constants in terms of the strain compo- neisen functions c21
' (23) and c21

i (23) from Eq. [2] for the
Bi2Sr2CaCu2O8 system are 23.9 and 6.7. Now from Eq.nents «0 and «9 are obtained as
[3] the cSr

' and c Br
i are evaluated as 20.9 and 6.2, respec-

tively. The low-temperature volume lattice thermal expan-C911 5 C11 1 [(C111 1 C112 1 3C11 1 C12)(«9/2)]
sion (in terms of the Grüneisen parameter) cL 5 2cBr

' 11 (C113 1 C13)«0
c Br

i is 4.4.
C912 5 C12 1 [(2C112 1 C12 2 C22)(«9/2)]

RESULTS AND DISCUSSION1 (C123 2 C13)«0

The theory of low-temperature thermal expansion hasC913 5 C13 1 [(C113 1 C123 2 C13 2 C44)(«9/2)]
been applied to determine the mode gammas and low-1 (C133 1 C13 2 C33 1 C44)«0
temperature limit of the thermal expansion in Bi2Sr2Ca

C933 5 C33 1 [(2C133 1 2C13)(«9/2)] Cu2O8 . The mode Grüneisen parameters of the acoustic
modes in different wave propagation directions have been1 (C333 1 3C33)«0
calculated, which show anisotropy in thermal expansion

C944 5 C44 1 [(C155 1 C144 1 2C44 1 2C13)(«9/2)] of the compound in all the acoustic wave propagation direc-
1 (C344 1 C33)«0 tions. The low-temperature limit of the Grüneisen parame-

ter of the crystal cL obtained in the present calculation is
C966 5 C66 1 [(2C166 1 2C66 1 C12 1 C22)(«9/2)] 4.4. The mean acoustic mode Grüneisen parameter for

1 (C366 1 C13)«0. certain polycrystalline high-Tc superconductors deter-
mined by ultrasonic techniques spread over a wide range

Here the CIJ and CIJK are, respectively, the second order from 1.5 to 23.7 (22–26). Hence the value 4.4 obtained for
and third order elastic stiffness constants in Voigt notation. cL is a reasonable one. The thermal Grüneisen parameter

The general expressions for GPs from the determinantal cth
o , deduced by G. K. White (27) for Bi-2 : 2 : 1 : 2, is 2.3

Eq. [4] are and it is related to the volume thermal expansion coeffi-
cient b, the specific heat Cp , the volume V, and the bulk
modulus Bs byc9j 5 (21/2Xj) H[Xj/«9(A 1 B)] 2 [/«0(AB 2 C2)]

2Xj 2 (A 1 B) J
cth

o 5
bBsV

cp
.

c0j 5 (21/2Xj) H[Xj/«0(A 1 B)] 2 [/«0(AB 2 C2)]
2Xj 2 (A 1 B) J,

The mean acoustic anode Grüneisen parameter cel de-
where duced (5) for Bi-2 : 2 : 1 : 2 is 2.5, which accounts for the

contribution of overall long-wavelength acoustic modes to
the thermal expansion. cel is evaluated usingA 5 C911 sin2 u 1 C944 cos2 u,

B 5 C944 sin2 u 1 C933 cos2 u, cel 5 (1/3)(c1 1 2cs).

C 5 sin u cos u(C913 1 C944), Here c1 and cs are longitudinal and shear acoustic mode
Grüneisen parameters, respectively. It must be noted here

and that although cth
o and cel are related to cL, they could not

be identified with cL. The average Grüneisen function
Xj 5 r0V 2

j (u, f). c Br
i parallel to the c axis is 6.2. This is in good agreement

with the longitudinal mode Grüneisen parameter cL value
of 7.9 along the [001] direction of Bi-2 : 2 : 1 : 2 obtained byHere we made use of the measured values of CIJ (5)

as well as the calculated CIJK (given in Table 1) for the G. A. Saunders et al. (5). The negative value of average
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TABLE 2
Generalized GPs for the Elastic Waves Propagating at Different Angles u to the Crystal Axis in the Bi2Sr2CaCu2O8 System

u 0 c91 c01 r0v2
1 c92 c02 r0v2

2 c93 c03 r0v2
3

5 15.66 11.93 19.55 216.76 12.43 19.14 5.732 9.519 44.21
15 12.63 8.157 23.40 215.22 11.04 20.25 4.818 10.45 44.77
25 9.115 3.911 28.06 210.57 8.790 22.34 3.669 10.68 48.41
35 4.983 4.446 29.15 26.435 6.351 25.15 3.032 8.098 58.50
45 0.788 6.297 27.42 22.727 4.166 28.35 2.399 5.537 72.93
55 23.781 8.160 24.79 0.2299 2.424 31.55 1.862 3.936 88.27
65 28.643 9.973 22.21 2.375 1.160 34.36 1.488 2.986 102.0
75 213.05 11.54 20.22 3.753 0.347 36.45 1.259 2.451 112.3
85 215.77 12.50 19.14 4.424 20.048 37.56 1.152 2.209 117.8

Note. r0 is the density of the crystal in the unstrained state.

Grüneisen function cBr
' (5 20.9) suggests that the thermal icity in the compound in certain acoustic wave propagation

directions. The variation of generalized Grüneisen param-expansion along the ab plane of Bi-2 : 2 : 1 : 2 could be nega-
tive. The transverse acoustic branch c01 assumes a minimum eters c9j and c0j with angle u, which the direction of propaga-

tion makes with the crystal axis of the Bi-2 : 2 : 1 : 2 system,value 3.91 at u 5 258 to the c axis and a maximum value
12.5 at u 5 858. For c02 and c03 the minimum values are are shown in Figs. 3 and 4, respectively.

Fanggao et al. (7) have clearly indicated that, in the Bi-20.048 and 2.21, respectively (occur at u 5 858 for both).
The acoustic branches of the GPs c92 and c91 have positive 2 : 2 : 1 : 2 system, weak interlayer forces are responsible for

the softening of mean elastic moduli and of the elasticas well as negative values (ranging from 4.42 to 216.76
and 15.66 to 215.77). c93 are found to be completely positive stiffness C33 . Thus, the main effect of application of hydro-

static pressure to a layer-like compound is to squeeze thewith a minimum of 1.15 at u 5 858 and a maximum of 5.73
at u 5 58. This anisotropy in the data of mode gammas is widely spaced weakly bonded layers together. Therefore,

the influence of the comparatively small repulsive forcesmounting evidence for pronounced vibrational anharmon-

FIG. 1. Polar diagram showing the plot of generalized GPs c9j for FIG. 2. Polar diagram showing the plot of generalized GPs c0j for
the acoustic branches as a function of the angle u, which the directionthe acoustic branches as a function of the angle u, which the direction

of propagation makes with the crystal axis of Bi2Sr2CaCu2O8 . Here the of propagation makes with the crystal axis of Bi2Sr2CaCu2O8 . Here the
scale chosen for plotting the polar coordinate r (i.e., the gamma values)scale chosen for plotting the polar coordinate r (i.e., gamma values) along

the XZ plane is marked on the X axis and the Z axis. along the XZ plane is marked on the X axis and the Z axis.
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mode Grüneisen parameters must be positive and much
larger than those of other acoustic modes. In the present
study, the mode gammas corresponding to the acoustic
modes propagating down the c axis of Bi-2 : 2 : 1 : 2 (i.e.,
the gamma values corresponding to u 5 58 to the c axis)
are all positive and much higher than the values along
other directions, except for the case of c92 . This lends more
support to the conclusion that the vibrational anharmon-
icity and hence the anisotropy in thermal expansion along
the c axis of Bi-2 : 2 : 1 : 2 is possibly due to the weak inter-
layer forces between BiO sheets.

CONCLUSION

The mode Grüneisen parameters of Bi2Sr2CaCu2O8 for
different acoustic wave propagation directions have been
calculated. The data give evidence for thermal expansion
anisotropy of the material for various acoustic modes. The
average Grüneisen functions cBr

' and c Br
i are 20.9 and 6.2,

respectively. These values suggest that the anisotropy in
thermal expansion along the c axis is more pronouncedFIG. 3. Variation of generalized GPs c9j with u for different acoustic
than that along the ab plane. Since the average Grüneisenwaves in Bi2Sr2CaCu2O8 .
gamma along the ab plane is a negative value compared
to that along the c axis, there could be a slight contraction
(due to the small mangitude of the value of cBr

' ) of thethat act between pairs of BiO layers must play an especially
crystal along this plane at low temperatures. The Grü-important role in the behavior of Bi2Sr2CaCu2O8 under
neisen parameter studies provide concrete evidence to thepressure. The energy and velocity of the acoustic mode
anisotropy in thermal expansion of Bi2Sr2CaCu2O8 . Thepropagated down the c axis should increase substantially
low-temperature limit of the Grüneisen gamma is positive,when pressure is applied. Therefore, the corresponding
so we expect volume expansion to be positive down to O K
for Bi2Sr2CaCu2O8 . The theory followed here to calculate
Grüneisen gammas along various orientations can be ap-
plied to other tetragonal systems (4·2m, 422, 4mm) as well.
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